论文标题

ST(N,H)翻译的相交的路径连接性

Path-connectedness of the intersection of translates of St(n,H)

论文作者

Idrissi, Nizar El, Kabbaj, Samir, Moalige, Brahim

论文摘要

如果$ h $是Hilbert Space,则Stiefel歧管$ ST(N,H)$由$ h $中的所有独立$ n $ Tuples形成。在本文中,我们通过证明路径连接的结果来为Stiefel歧管的拓扑研究做出贡献。我们证明,在$ st(n,h)$的翻译相交是由多边形路径与多边形路径相连的,条件是在翻译$ n $ tuples的组成部分的跨度的条件下。我们依靠我们为此证明的引理。

If $H$ is a Hilbert space, the Stiefel manifold $St(n,H)$ is formed by all the independent $n$-tuples in $H$. In this article, we contribute to the topological study of Stiefel manifolds by proving a path-connectedness result. We prove that the intersection of translates of $St(n,H)$ is path-connected by polygonal paths under a condition on the codimension of the span of the components of the translating $n$-tuples. We rely on a lemma that we prove for the occasion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源