论文标题
随机保护法的不变措施
Invariant measures for stochastic conservation laws on the line
论文作者
论文摘要
我们在线上考虑了一种随机的保护定律,依赖溶液依赖性扩散率,一种超线性的,亚次级的哈密顿量和光滑的,空间均匀的踢踢随机强迫。我们表明,这个马尔可夫过程在非阐释无限的集合中为每种平均值提供了一个独特的千古均匀不变测度。这概括了先前在随机汉堡方程式上的工作。
We consider a stochastic conservation law on the line with solution-dependent diffusivity, a super-linear, sub-quadratic Hamiltonian, and smooth, spatially-homogeneous kick-type random forcing. We show that this Markov process admits a unique ergodic spatially-homogeneous invariant measure for each mean in a non-explicit unbounded set. This generalizes previous work on the stochastic Burgers equation.