论文标题

来自两个可观察到的中间能量重离子碰撞的贝叶斯重建影响参数分布

Bayesian reconstruction of impact parameter distributions from two observables for intermediate energy heavy ion collisions

论文作者

Chen, Xiang, Li, Li, Cui, Ying, Yang, Junping, Li, Zhuxia, Zhang, Yingxun

论文摘要

为了重建来自所选事件样本或中心性的冲击参数分布,该分布由两次观察到的,在中间能量重离子碰撞下,我们扩展了das \ textit {et al。}提出的方法[phys。 Rev. C 97,014905(2018)],Rogly \ textit {et al。} [phys。 Rev. C 98,024902(2018)]和Frankland \ textit {et al。} [phys。 Rev. C 104,034609(2021)]。基于对波动机制的深入研究,我们发现固有波动主要是在繁重离子碰撞过程中初始化和核子核子碰撞的微观随机性中产生的,这导致了可见的对高斯形式的影响参数的可见物。在这项工作中,带电颗粒的多样性和带电颗粒的总横向动量同时使用基于贝叶斯方法的选定事件或中心性的模型独立地重建影响参数分布。为了用两个可观察到的中心性对中心性进行排序,我们建议使用$ k $ -Means聚类方法(一种无监督的机器学习算法),该方法可以在给出类号码时自动对事件进行分类。此外,可以使用两个可观察结果的重建影响参数分布来学习不同居中的多样性和横向动量之间的相关性,这对于理解碎片机制可能很有用。

To reconstruct the impact parameter distributions from the selected events sample or centrality, which is defined by two-observables, at intermediate energy heavy ion collisions, we extend the approach proposed by Das \textit{et al.} [Phys. Rev. C 97, 014905 (2018)], Rogly \textit{et al.} [Phys. Rev. C 98, 024902 (2018)], and Frankland \textit{et al.} [Phys. Rev. C 104, 034609 (2021)]. Based on deep investigations of the fluctuation mechanism, we found that the intrinsic fluctuations are mainly generated in the microscopic stochasticity of initialization and nucleon-nucleon collisions in the nonequilibrium process of heavy ion collisions, and this leads the observables to fluctuate with respect to impact parameter in a Gaussian form. In this work, the multiplicity of the charged particles and the total transverse momentum of the light charged particles are used simultaneously to model-independently reconstruct the impact parameter distributions for selected events or centrality based on the Bayesian method. For sorting the centrality with two observables, we propose to use the $K$-means clustering method (an unsupervised machine learning algorithm), which can automatically sort events when the class number is given. Furthermore, the reconstructed impact parameter distributions from data of the two observables can be used to learn the correlation between multiplicity and transverse momentum at different centralities, which may be useful for understanding the fragmentation mechanism.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源