论文标题

晶格仪理论的欧几里得路径积分的量子采样

Quantum sampling for the Euclidean path integral of lattice gauge theory

论文作者

Yamamoto, Arata

论文摘要

尽管迄今为止,哈密顿的形式主义对晶格量规理论的量子计算很喜欢,但路径的整体形式永远不会是没有用的。路径整体形式主义的优势是经典晶格模拟和表现出洛伦兹的不变性所积累的知识和经验。我们讨论了路径积分形式主义中晶格量规理论的量子计算。我们利用量子采样算法来生成量规配置,并在四维超立方体上展示了$ z_2 $ lattice量规理论的基准测试。

Although the Hamiltonian formalism is so far favored for quantum computation of lattice gauge theory, the path integral formalism would never be useless. The advantages of the path integral formalism are the knowledge and experience accumulated by classical lattice simulation and manifest Lorentz invariance. We discuss quantum computation of lattice gauge theory in the path integral formalism. We utilize a quantum sampling algorithm to generate gauge configurations, and demonstrate a benchmark test of $Z_2$ lattice gauge theory on a four-dimensional hypercube.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源