论文标题
具有均匀分布异质性的嵌合体:两个耦合种群
Chimeras with uniformly distributed heterogeneity: two coupled populations
论文作者
论文摘要
当一个种群同步的振荡器同步时,嵌合体发生在两个振荡器耦合群体的网络中,而另一个人群中的振荡器是异步的。我们在平面振荡器网络中考虑了这种形式的嵌合体,其中一个与振荡器动力学相关的参数是从均匀分布中随机选择的。 [C.R.中的方法的概括Laing,物理评论E,100,042211,2019],处理相同的振荡器,用于研究这些异构网络的嵌合体的存在和稳定性,该网络的振荡器数量极限。在所有情况下,使振荡器更加异质都会在鞍节分叉中摧毁稳定的嵌合体。结果有助于我们了解一般振荡器网络中嵌合体的鲁棒性。
Chimeras occur in networks of two coupled populations of oscillators when the oscillators in one population synchronise while those in the other are asynchronous. We consider chimeras of this form in networks of planar oscillators for which one parameter associated with the dynamics of an oscillator is randomly chosen from a uniform distribution. A generalisation of the approach in [C.R. Laing, Physical Review E, 100, 042211, 2019], which dealt with identical oscillators, is used to investigate the existence and stability of chimeras for these heterogeneous networks in the limit of an infinite number of oscillators. In all cases, making the oscillators more heterogeneous destroys the stable chimera in a saddle-node bifurcation. The results help us understand the robustness of chimeras in networks of general oscillators to heterogeneity.