论文标题

恒星参数的深度学习应用确定:i-约束超参数

Deep Learning application for stellar parameters determination: I- Constraining the hyperparameters

论文作者

Gebran, Marwan, Connick, Kathleen, Farhat, Hikmat, Paletou, Frédéric, Bentley, Ian

论文摘要

机器学习是一种有效的方法,用于分析和解释可用的天文数据的增加。在这项研究中,我们表明了一种教学方法,该方法应该使任何愿意在恒星参数确定的情况下试验深度学习技术的人受益。利用卷积神经网络体系结构,我们逐步概述了如何选择最佳参数,以得出恒星的恒星参数的最准确值:t $ _ {\ rm {eff}}} $,$ \ log g $ g $,[x/h],以及$ v_e \ sin \ sin \ sin i i $ $。带有随机噪声的合成光谱用于限制此方法并模仿观察结果。我们发现,每个恒星参数都需要网络超参数的不同组合,并且达到的最大精度取决于此组合,以及观测值的信号与噪声比以及网络的体系结构。我们还表明,在该技术优化后,该技术可以应用于不同波长范围的其他光谱类型。

Machine Learning is an efficient method for analyzing and interpreting the increasing amount of astronomical data that is available. In this study, we show, a pedagogical approach that should benefit anyone willing to experiment with Deep Learning techniques in the context of stellar parameters determination. Utilizing the Convolutional Neural Network architecture, we give a step by step overview of how to select the optimal parameters for deriving the most accurate values for the stellar parameters of stars: T$_{\rm{eff}}$, $\log g$, [X/H], and $v_e \sin i$. Synthetic spectra with random noise were used to constrain this method and to mimic the observations. We found that each stellar parameter requires a different combination of network hyperparameters and the maximum accuracy reached depends on this combination, as well as, the Signal to Noise ratio of the observations, and the architecture of the network. We also show that this technique can be applied to other spectral types in different wavelength ranges after the technique has been optimized.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源