论文标题

使用游戏理论对复杂动力学系统的对抗性决策

Adversarial Decisions on Complex Dynamical Systems using Game Theory

论文作者

Cullen, Andrew C., Alpcan, Tansu, Kalloniatis, Alexander C.

论文摘要

我们将计算游戏理论应用于基于物理模型的统一,该模型代表了合作和竞争过程中许多代理的决策。在这里,竞争对手试图对自己的回报产生积极影响,同时对竞争对手的回报产生负面影响。与所谓的Boyd-Kuramoto-Lanchester(BKL)复杂的动力系统模型对这些相互作用进行建模,可将结果应用于业务,游戏和安全环境。本文研究了BKL模型上的一系列决策问题,其中使用游戏理论方法分析了一系列耦合,切换动力学系统。 由于它们的大小,解决这些BKL游戏的计算成本成为解决方案过程中的主要因素。为了解决这个问题,我们引入了一种新型的NASH主导求解器,该求解器既有效又精确。将这种新解决方案技术的性能与传统的精确求解器进行了比较,这些求解器遍及整个游戏树,以及近似求解器(例如近视和蒙特卡洛树搜索(MCTS))。评估了这些技术,并用于在对抗环境中对非线性动力学系统和战略决策进行见解。

We apply computational Game Theory to a unification of physics-based models that represent decision-making across a number of agents within both cooperative and competitive processes. Here the competitors try to both positively influence their own returns, while negatively affecting those of their competitors. Modelling these interactions with the so-called Boyd-Kuramoto-Lanchester (BKL) complex dynamical system model yields results that can be applied to business, gaming and security contexts. This paper studies a class of decision problems on the BKL model, where a large set of coupled, switching dynamical systems are analysed using game-theoretic methods. Due to their size, the computational cost of solving these BKL games becomes the dominant factor in the solution process. To resolve this, we introduce a novel Nash Dominant solver, which is both numerically efficient and exact. The performance of this new solution technique is compared to traditional exact solvers, which traverse the entire game tree, as well as to approximate solvers such as Myopic and Monte Carlo Tree Search (MCTS). These techniques are assessed, and used to gain insights into both nonlinear dynamical systems and strategic decision making in adversarial environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源