论文标题

端到端优化用于通过压缩感应的成像成像的端口

End-to-End Optimization of Metasurfaces for Imaging with Compressed Sensing

论文作者

Arya, Gaurav, Li, William F., Roques-Carmes, Charles, Soljačić, Marin, Johnson, Steven G., Lin, Zin

论文摘要

我们提出了一个用于端到端优化的跨表面成像系统的框架,该系统使用压缩传感重建目标,这是一种在目标对象表现出稀疏性时解决不确定的成像问题的技术(即可以用少数非零值描述对象,但是这些值的位置未知)。我们将一种迭代的,未透明的压缩感应重建算法嵌套到我们的端到端优化管道中,从而导致了一种可解释的,可解释的,可解释的方法,以最大程度地利用元词来利用对象稀疏性。我们将框架应用于具有相变材料的超分辨率成像和高分辨率深度成像。在这两种情况下,我们的端到端框架在计算上都发现了最佳的跨表面结构,用于压缩感测回恢复,自动平衡了许多复杂的设计考虑因素,以从复杂的,物理上约束的歧管中选择成像的成像测量矩阵,并与数百万二十多个二手数。优化的跨表面成像系统对噪声具有鲁棒性,在随机散射表面上显着改善,并接近高斯基质的理想压缩感测性能,显示了物理跨表面系统如何明显地接近压缩感测的数学限制。

We present a framework for the end-to-end optimization of metasurface imaging systems that reconstruct targets using compressed sensing, a technique for solving underdetermined imaging problems when the target object exhibits sparsity (i.e. the object can be described by a small number of non-zero values, but the positions of these values are unknown). We nest an iterative, unapproximated compressed sensing reconstruction algorithm into our end-to-end optimization pipeline, resulting in an interpretable, data-efficient method for maximally leveraging metaoptics to exploit object sparsity. We apply our framework to super-resolution imaging and high-resolution depth imaging with a phase-change material. In both situations, our end-to-end framework computationally discovers optimal metasurface structures for compressed sensing recovery, automatically balancing a number of complicated design considerations to select an imaging measurement matrix from a complex, physically constrained manifold with millions ofdimensions. The optimized metasurface imaging systems are robust to noise, significantly improving over random scattering surfaces and approaching the ideal compressed sensing performance of a Gaussian matrix, showing how a physical metasurface system can demonstrably approach the mathematical limits of compressed sensing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源