论文标题
多部分非富度一维系统的拓扑
Topology of multipartite non-Hermitian one-dimensional systems
论文作者
论文摘要
探索了多部分的非高级su-schrieffer-Heeger模型,作为一维系统的典型示例,该系统具有几个带有sublattice的位点,用于揭示具有遗传性的绝缘和金属阶段,没有任何遗传学的阶段。这些阶段的特征是在真实和假想能的参数空间上包围单个或多个特殊点(EPS)的多个复合能带的复合循环环。我们显示了这些复合回路的拓扑结构类似于众所周知的拓扑对象,例如Möbius条和Penrose Triangles,并且可以通过非绝热的循环几何相量化,该几何阶段仅包括参与频段的贡献。我们通过分析得出具有模型相边界的完整相图。我们进一步研究了通过复合能带对参数空间和相关拓扑的围绕多个EP的联系。
The multipartite non-Hermitian Su-Schrieffer-Heeger model is explored as a prototypical example of one-dimensional systems with several sublattice sites for unveiling intriguing insulating and metallic phases with no Hermitian counterparts. These phases are characterized by composite cyclic loops of multiple complex-energy bands encircling single or multiple exceptional points (EPs) on the parametric space of real and imaginary energy. We show the topology of these composite loops is similar to well-known topological objects like Möbius strips and Penrose triangles, and can be quantified by a nonadiabatic cyclic geometric phase which includes contributions only from the participating bands. We analytically derive a complete phase diagram with the phase boundaries of the model. We further examine the connection between the encircling of multiple EPs by complex-energy bands on parametric space and associated topology.