论文标题
关于特殊相对论的Finslerian扩展
On Finslerian extension of special relativity
论文作者
论文摘要
我们证明,Robb-Geroch对相对论间隔的定义承认了一个简单且相当自然的概括,从而导致了鳍的特殊相对论。这种扩展的另一个理由可以追溯到拉兰(Lalan)和始终的作品,最后,博格斯洛夫斯基(Bogoslovsky)以“本地各向异性时空特殊相关理论”的名称进行了坚实的基础,并系统地研究了。该时空的等轴测组,$ \ mathrm {disim} _b(2)$,是Cohen和Glashow的非常特殊的相对性对称组$ \ MATHRM {ISIM(2)} $的变形。因此,变形参数b可以被视为宇宙恒定的类似物,该宇宙表征了庞加雷组变形为de Sitter(抗DE保姆)组。在本文的背景下,Finslerian扩展的简单性和自然性增加了这样的论点,即应仔细考虑非零价值为$ b $的可能性。
We demonstrate that Robb-Geroch's definition of a relativistic interval admits a simple and fairly natural generalization leading to a Finsler extension of special relativity. Another justification for such an extension goes back to the works of Lalan and Alway and, finally, was put on a solid basis and systematically investigated by Bogoslovsky under the name "Special-relativistic theory of locally anisotropic space-time". The isometry group of this space-time, $\mathrm{DISIM}_b(2)$, is a deformation of the Cohen and Glashow's very special relativity symmetry group $\mathrm{ISIM(2)}$. Thus, the deformation parameter b can be regarded as an analog of the cosmological constant characterizing the deformation of the Poincare group into the de Sitter (anti-de Sitter) group. The simplicity and naturalness of Finslerian extension in the context of this article adds weight to the argument that the possibility of a nonzero value of $b$ should be carefully considered.