论文标题

分子构象的生成粗粒

Generative Coarse-Graining of Molecular Conformations

论文作者

Wang, Wujie, Xu, Minkai, Cai, Chen, Miller, Benjamin Kurt, Smidt, Tess, Wang, Yusu, Tang, Jian, Gómez-Bombarelli, Rafael

论文摘要

分子模拟的粗粒度(CG)通过将选定的原子分组为伪珠,从而简化了粒子的表示,并急剧加速了模拟。但是,这种CG程序会导致信息损失,从而使准确的背景映射,即从CG坐标恢复细粒度(FG)坐标,这是一个长期存在的挑战。受生成模型和e象网络的最新进展的启发,我们提出了一个新型模型,该模型严格地嵌入了背态转换的重要概率性质和几何一致性要求。我们的模型将FG的不确定性编码为不变的潜在空间,并通过Equivariant卷积将其解码为FG几何形状。为了标准化该领域的评估,我们根据分子动力学轨迹提供了三个综合基准。实验表明,我们的方法始终恢复更现实的结构,并以明显的边距胜过现有的数据驱动方法。

Coarse-graining (CG) of molecular simulations simplifies the particle representation by grouping selected atoms into pseudo-beads and drastically accelerates simulation. However, such CG procedure induces information losses, which makes accurate backmapping, i.e., restoring fine-grained (FG) coordinates from CG coordinates, a long-standing challenge. Inspired by the recent progress in generative models and equivariant networks, we propose a novel model that rigorously embeds the vital probabilistic nature and geometric consistency requirements of the backmapping transformation. Our model encodes the FG uncertainties into an invariant latent space and decodes them back to FG geometries via equivariant convolutions. To standardize the evaluation of this domain, we provide three comprehensive benchmarks based on molecular dynamics trajectories. Experiments show that our approach always recovers more realistic structures and outperforms existing data-driven methods with a significant margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源