论文标题

进行多级前运动分类

Towards Multi-class Pre-movement Classification

论文作者

Jia, Hao, Sun, Zhe, Duan, Feng, Zhang, Yu, Caiafa, Cesar F., Solé-Casals, Jordi

论文摘要

在非侵入性的脑部计算机界面系统中,前动物解码在四肢实际移动之前的运动中起着重要作用。与运动相关的皮质电位是一种与前运动解码相关的大脑活性。在当前的研究中,从运动解码的模式主要应用于运动状态和静止状态之间的二元分类,例如肘部屈曲和休息。两个运动状态和多个运动状态之间的分类仍然具有挑战性。这项研究提出了一种新方法,即恒星 - 安排光谱滤波(SASF),以解决多级运动前分类问题。我们首先设计一个由任务相关的组件分析(RTRCA)框架,该框架由两个模块组成。第一个模块是运动状态和静止状态之间的分类。第二个模块是多个运动状态的分类。 SASF是通过优化RTRCA中的功能来开发的。在SASF中,在RTRCA的第一个模块上使用了Felter Bank上的功能选择,并且在RTRCA的第二个模块上使用了Windows上的特征选择。线性判别分析分类器用于对优化特征进行分类。在两项动作之间的二进制分类中,SASF的分类准确性达到0.9670 $ \ pm $ 0.0522,这显着高于深卷积神经网络(0.6247 $ \ pm $ 0.0680)提供的结果,而歧视空间模式方法(0.4400 $ $ \ $ \ $ \ $ \ 0.07700)。在7个州的多类分类中,SASF的分类精度为0.9491 $ \ pm $ 0.0372。拟议的SASF极大地改善了两个动作之间的分类,并可以在多个动作之间进行分类。结果表明,在实际肢体运动之前,可以从EEG信号解码该运动。

In non-invasive brain-computer interface systems, pre-movement decoding plays an important role in the detection of movement before limbs actually move. Movement-related cortical potential is a kind of brain activity associated with pre-movement decoding. In current studies, patterns decoded from movement are mainly applied to the binary classification between movement state and resting state, such as elbow flexion and rest. The classifications between two movement states and among multiple movement states are still challenging. This study proposes a new method, the star-arrangement spectral filtering (SASF), to solve the multi-class pre-movement classification problem. We first design a referenced task-related component analysis (RTRCA) framework that consists of two modules. This first module is the classification between movement state and resting state; the second module is the classification of multiple movement states. SASF is developed by optimizing the features in RTRCA. In SASF, feature selection on filter banks is used on the first module of RTRCA, and feature selection on time windows is used on the second module of RTRCA. A linear discriminant analysis classifier is used to classify the optimized features. In the binary classification between two motions, the classification accuracy of SASF achieves 0.9670$\pm$0.0522, which is significantly higher than the result provided by the deep convolutional neural network (0.6247$\pm$0.0680) and the discriminative spatial pattern method (0.4400$\pm$0.0700). In the multi-class classification of 7 states, the classification accuracy of SASF is 0.9491$\pm$0.0372. The proposed SASF greatly improves the classification between two motions and enables the classification among multiple motions. The result shows that the movement can be decoded from EEG signals before the actual limb movement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源