论文标题

通过条件生成对抗网络设计量子多体问题

Designing quantum many-body matter with conditional generative adversarial networks

论文作者

Koch, Rouven, Lado, Jose L.

论文摘要

量子多体系统的动态相关器的计算代表了凝结物理学中的开放关键挑战。尽管近年来强大的方法已经增加了,但对于大多数具有复杂配置空间的多体系统,涵盖完整的参数空间仍然是不可行的。在这里,我们证明有条件的生成对抗网络(GAN)允许模拟几个多体系统的完整参数空间,既占控制参数的核算又是随机疾病效应。经过一组受限的嘈杂多体计算的训练后,条件GAN算法为哈密顿量立即提供了整个动力学激发光谱,并且具有类似于精确计算的精度。我们进一步证明了受过训练的条件GAN如何自动提供一种有力的方法,可以从其动态激发中学习,并通过异常检测来标记非物理系统。我们的方法将产生的对抗性学习作为一种强大的技术,可以探索复杂的多体现象,从而为设计大型量子多体物质而提供了起点。

The computation of dynamical correlators of quantum many-body systems represents an open critical challenge in condensed matter physics. While powerful methodologies have risen in recent years, covering the full parameter space remains unfeasible for most many-body systems with a complex configuration space. Here we demonstrate that conditional Generative Adversarial Networks (GANs) allow simulating the full parameter space of several many-body systems, accounting both for controlled parameters, and stochastic disorder effects. After training with a restricted set of noisy many-body calculations, the conditional GAN algorithm provides the whole dynamical excitation spectra for a Hamiltonian instantly and with an accuracy analogous to the exact calculation. We further demonstrate how the trained conditional GAN automatically provides a powerful method for Hamiltonian learning from its dynamical excitations, and to flag non-physical systems via outlier detection. Our methodology puts forward generative adversarial learning as a powerful technique to explore complex many-body phenomena, providing a starting point to design large-scale quantum many-body matter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源