论文标题
在墙壁建造场景中的自主,移动操作:MBZIRC的团队Larics 2020
Autonomous, Mobile Manipulation in a Wall-building Scenario: Team LARICS at MBZIRC 2020
论文作者
论文摘要
在本文中,我们介绍了MBZIRC 2020竞赛挑战2中使用的移动操纵平台的硬件设计和控制方法。在这一挑战中,由无人机和一个UGV团队在自动构建的场景中合作,由施工自动化和大规模机器人3D打印动机。机器人必须自主能够在非结构化的室外环境中检测,操纵和运输砖块。我们的控制方法是基于一种状态机,该状态机决定哪些控制器在挑战的每个阶段都处于活动状态。在第一阶段,我们的UGV使用视觉伺服和本地控制器在不考虑其方向的情况下接近目标对象。第二阶段包括使用基于OPENCV的RGB-D图像和点云数据的处理来检测对象的全局姿势,并在全局地图中计算一个对齐目标。该地图是由Google制图师构建的,并基于机上LIDAR,IMU和GPS数据。第二阶段的运动控制使用ROS MOVE BASE封装实现,并具有时间弹性带轨迹优化。 Visual Servo算法指导车辆以当地的对象 - 呼吸运动和手臂操纵砖块。为了确保对砖的磁贴有稳定的掌握,我们开发了一种被动的电磁抓地力,具有触觉反馈。我们完全自主的UGV在挑战2和对其砖拾取算法的竞争后评估中表现良好。
In this paper we present our hardware design and control approaches for a mobile manipulation platform used in Challenge 2 of the MBZIRC 2020 competition. In this challenge, a team of UAVs and a single UGV collaborate in an autonomous, wall-building scenario, motivated by construction automation and large-scale robotic 3D printing. The robots must be able, autonomously, to detect, manipulate, and transport bricks in an unstructured, outdoor environment. Our control approach is based on a state machine that dictates which controllers are active at each stage of the Challenge. In the first stage our UGV uses visual servoing and local controllers to approach the target object without considering its orientation. The second stage consists of detecting the object's global pose using OpenCV-based processing of RGB-D image and point-cloud data, and calculating an alignment goal within a global map. The map is built with Google Cartographer and is based on onboard LIDAR, IMU, and GPS data. Motion control in the second stage is realized using the ROS Move Base package with Time-Elastic Band trajectory optimization. Visual servo algorithms guide the vehicle in local object-approach movement and the arm in manipulating bricks. To ensure a stable grasp of the brick's magnetic patch, we developed a passively-compliant, electromagnetic gripper with tactile feedback. Our fully-autonomous UGV performed well in Challenge 2 and in post-competition evaluations of its brick pick-and-place algorithms.