论文标题
在几乎荒地4个manifolds上的dolbeault谐波(1,1)的尺寸上
On the dimension of Dolbeault harmonic (1,1)-forms on almost Hermitian 4-manifolds
论文作者
论文摘要
我们证明,Dolbeault Harmonic $(1,1)$的尺寸$ h^{1,1} _ {\ overline \ partial} $ - 不一定总是等于$ b^ - $ b^ - $ b^ - 在紧凑的几乎复杂的4个manifold上,几乎与几乎是遗物的几乎是hermitrician nothock not on shementally Complaster上几乎是综合性的。的确,我们提供了不可集成的,非局部在共同存在的示例,几乎是kähler,几乎在紧凑型4个manifolds上使用$ h^{1,1} _ {\ overline \ partial \ partial} = b^ - +1 $。这回答了霍尔特的问题。
We prove that the dimension $h^{1,1}_{\overline\partial}$ of the space of Dolbeault harmonic $(1,1)$-forms is not necessarily always equal to $b^-$ on a compact almost complex 4-manifold endowed with an almost Hermitian metric which is not locally conformally almost Kähler. Indeed, we provide examples of non integrable, non locally conformally almost Kähler, almost Hermitian structures on compact 4-manifolds with $h^{1,1}_{\overline\partial}=b^-+1$. This answers to a question by Holt.