论文标题

使用惯性传感器数组的惯性导航

Inertial Navigation Using an Inertial Sensor Array

论文作者

Carlsson, Håkan, Skog, Isaac, Hendeby, Gustaf, Jaldén, Joakim

论文摘要

我们提出了一个综合框架,用于融合来自多个且通常放置的加速度计和陀螺仪的测量,以执行惯性导航。使用加速度计阵列提供的角度加速度,我们表明可以使用二阶精度完成方向的数值整合,这与仅在使用陀螺仪时可以实现的传统一阶准确度相比,这是更准确的。由于方向错误是惯性导航中最重要的错误源,因此改善方向估计会减少整体导航误差。实际性能益处取决于惯性传感器数组的先验知识,因此我们使用有关方向模型的不同基本假设提出了四个不同的状态空间模型。使用Lie组扩展Kalman滤波器通过模拟和现实世界实验评估模型。我们还展示了单个加速度计的偏见是无法观察到的,并且可以用六维偏差项替换,该偏差术语的尺寸是固定的并且与加速度计的数量无关。

We present a comprehensive framework for fusing measurements from multiple and generally placed accelerometers and gyroscopes to perform inertial navigation. Using the angular acceleration provided by the accelerometer array, we show that the numerical integration of the orientation can be done with second-order accuracy, which is more accurate compared to the traditional first-order accuracy that can be achieved when only using the gyroscopes. Since orientation errors are the most significant error source in inertial navigation, improving the orientation estimation reduces the overall navigation error. The practical performance benefit depends on prior knowledge of the inertial sensor array, and therefore we present four different state-space models using different underlying assumptions regarding the orientation modeling. The models are evaluated using a Lie Group Extended Kalman filter through simulations and real-world experiments. We also show how individual accelerometer biases are unobservable and can be replaced by a six-dimensional bias term whose dimension is fixed and independent of the number of accelerometers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源