论文标题

通过张量分解一致的协作过滤

Consistent Collaborative Filtering via Tensor Decomposition

论文作者

Zhao, Shiwen, Crissman, Charles, Sapiro, Guillermo R

论文摘要

协作过滤是分析用户活动和构建项目推荐系统的事实上的标准。在这项工作中,我们开发了切成薄片的反对称分解(SAD),这是一种基于隐式反馈的合作过滤的新模型。与传统技术相比,估计用户(用户向量)和项目(项目向量)的潜在表示,SAD使用新颖的三向张量视图对用户 - 项目交互的视图介绍了每个项目的另外一个潜在矢量。该新向量扩展了由标准点产品计算出的用户项目偏好到一般的内部产品,在评估其相对偏好时会产生相互作用。 SAD减少到最新的(SOTA)协作过滤模型时,当矢量崩溃为1时,而在本文中,我们允许从数据估算其值。允许新项目向量的值与1不同具有深远的影响。它表明用户在评估项目时可能具有非线性心理模型,从而可以在成对比较中存在周期。我们在模拟和现实世界数据集中证明了SAD的效率,该数据集包含超过100万用户项目交互。通过与具有隐式反馈的七个SOTA协作过滤模型进行比较,SAD会产生最一致的个性化偏好,同时在个性化建议中保持最高的准确性。我们在python库中发布模型和推理算法https://github.com/apple/ml-sad。

Collaborative filtering is the de facto standard for analyzing users' activities and building recommendation systems for items. In this work we develop Sliced Anti-symmetric Decomposition (SAD), a new model for collaborative filtering based on implicit feedback. In contrast to traditional techniques where a latent representation of users (user vectors) and items (item vectors) are estimated, SAD introduces one additional latent vector to each item, using a novel three-way tensor view of user-item interactions. This new vector extends user-item preferences calculated by standard dot products to general inner products, producing interactions between items when evaluating their relative preferences. SAD reduces to state-of-the-art (SOTA) collaborative filtering models when the vector collapses to 1, while in this paper we allow its value to be estimated from data. Allowing the values of the new item vector to be different from 1 has profound implications. It suggests users may have nonlinear mental models when evaluating items, allowing the existence of cycles in pairwise comparisons. We demonstrate the efficiency of SAD in both simulated and real world datasets containing over 1M user-item interactions. By comparing with seven SOTA collaborative filtering models with implicit feedbacks, SAD produces the most consistent personalized preferences, in the meanwhile maintaining top-level of accuracy in personalized recommendations. We release the model and inference algorithms in a Python library https://github.com/apple/ml-sad.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源