论文标题

与多家银行在连接图上分配资金

Distribution of money on connected graphs with multiple banks

论文作者

Lanchier, Nicolas, Reed, Stephanie

论文摘要

本文研究了从物理文献中引入的模型启发的生态植物学感兴趣的相互作用粒子系统。原始模型由以其资本为特征的单个银行的客户组成,而离散的时间动态由货币交易组成,其中随机的个人$ x $为另一个随机的个人$ y $ $ y $ $ y $ $ x $,当$ x $取消的交易是有债务的,没有更多的硬币可以从银行借钱。物理学家使用数值模拟和启发式论证的结合,猜想在较大的人口/温度限制中,平衡收敛的货币分布(给定个体拥有的硬币数量的分布)将货币分布(由给定的个体拥有的硬币数量分布)收敛到不对称的拉普拉斯分布。在本文中,我们证明并将这种猜想扩展到了一个更通用的模型,包括多个银行和跨银行客户之间的互动。更重要的是,我们的模型假设客户位于一般无向的连接图上(与原始模型中的完整图相对),该图将邻居解释为业务合作伙伴,并沿边缘进行交易,从而对跨社交网络的货币流进行建模。我们显示了任何图的较大人口/温度限制中非对称拉式分布的收敛性,从而证明并扩展了从物理学家的猜想,并获得了所有人口量和货币温度的货币分布的确切表达。

This paper studies an interacting particle system of interest in econophysics inspired from a model introduced in the physics literature. The original model consists of the customers of a single bank characterized by their capital, and the discrete-time dynamics consists of monetary transactions in which a random individual $x$ gives one coin to another random individual $y$, the transaction being canceled when $x$ is in debt and there is no more coins to borrow from the bank. Using a combination of numerical simulations and heuristic arguments, physicists conjectured that the distribution of money (the distribution of the number of coins owned by a given individual) at equilibrium converges to an asymmetric Laplace distribution in the large population/temperature limit. In this paper, we prove and extend this conjecture to a more general model including multiple banks and interactions among customers across banks. More importantly, our model assumes that customers are located on a general undirected connected graph (as opposed to the complete graph in the original model) where neighbors are interpreted as business partners, and transactions occur along the edges, thus modeling the flow of money across a social network. We show the convergence to the asymmetric Laplace distribution in the large population/temperature limit for any graph, thus proving and extending the conjecture from the physicists, and derive an exact expression of the distribution of money for all population sizes and money temperatures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源