论文标题

在地球外部核心条件下对Fe-Si-O系统的原子模拟的深度机器学习潜力

A deep machine learning potential for atomistic simulation of Fe-Si-O systems under Earth's outer core conditions

论文作者

Zhang, Chao, Tang, Ling, Sun, Yang, Ho, Kai-Ming, Wentzcovitch, Renata M., Wang, Cai-Zhuang

论文摘要

使用人工神经网络的机器学习(ANN-ML)来产生原子间电位,已被证明是一种有希望的方法,可以解决长期存在的分子动力学(MD)模拟的准确性与效率的挑战。在这里,以Fe-Si-O系统为原型,我们表明可以开发准确且可转移的ANN-ML电位,以在地球外部芯的高压和高温条件下对材料的可靠模拟进行可靠的MD模拟。 Fe-Si-O系统的ANN-ML电位通过与相关二进制的能量和力拟合在高压和基于密度功能理论(DFT)的第一原理计算获得的高压和温度下的训练。我们表明,生成的ANN-ML电位很好地描述了该复杂系统的液相的结构和动力学。具有DFT精度的有效ANN-ML电势为地球外核中复杂的Fe-Si-O系统的结构和动力学的精确原子模拟提供了有希望的方案。

Using artificial neural-network machine learning (ANN-ML) to generate interatomic potentials has been demonstrated to be a promising approach to address the long-standing challenge of accuracy versus efficiency in molecular dynamics (MD) simulations. Here, taking the Fe-Si-O system as a prototype, we show that accurate and transferable ANN-ML potentials can be developed for reliable MD simulations of materials at high-pressure and high-temperature conditions of the Earth's outer core. The ANN-ML potential for Fe-Si-O system is trained by fitting to the energies and forces of related binaries and ternary liquid structures at high pressures and temperatures obtained by first-principles calculations based on density functional theory (DFT). We show that the generated ANN-ML potential describes well the structure and dynamics of liquid phases of this complex system. The efficient ANN-ML potential with DFT accuracy provides a promising scheme for accurate atomistic simulations of structures and dynamics of complex Fe-Si-O system in the Earth's outer core.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源