论文标题
基于图的算法为无线网络中的能源感力分配而展开
Graph-based Algorithm Unfolding for Energy-aware Power Allocation in Wireless Networks
论文作者
论文摘要
我们开发了一个基于图形的新型可训练框架,以最大程度地提高无线通信网络中功率分配的加权总和能量效率(WSEE)。为了解决问题的非凸性性质,提出的方法由受经典迭代次优式方法启发的模块化结构组成,并通过可学习的组件增强。更确切地说,我们提出了连续的凹近似(SCA)方法的深入展开。在我们展开的SCA(USCA)框架中,现在可以通过图形卷积神经网络(GCN)来学习最初的预设参数,该参数直接利用多用户通道状态信息作为基础图邻接矩阵。我们显示了所提出的体系结构的置换量比,这是应用于无线网络数据的模型的理想属性。使用渐进培训策略,通过随机梯度下降方法对USCA框架进行培训。仔细设计了无监督的损失,以在最大功率约束下具有物镜的单调特性。全面的数值结果表明了其在不同大小,密度和通道分布的不同网络拓扑之间的普遍性。详尽的比较说明了USCA对最先进的基准的性能和鲁棒性的提高。
We develop a novel graph-based trainable framework to maximize the weighted sum energy efficiency (WSEE) for power allocation in wireless communication networks. To address the non-convex nature of the problem, the proposed method consists of modular structures inspired by a classical iterative suboptimal approach and enhanced with learnable components. More precisely, we propose a deep unfolding of the successive concave approximation (SCA) method. In our unfolded SCA (USCA) framework, the originally preset parameters are now learnable via graph convolutional neural networks (GCNs) that directly exploit multi-user channel state information as the underlying graph adjacency matrix. We show the permutation equivariance of the proposed architecture, which is a desirable property for models applied to wireless network data. The USCA framework is trained through a stochastic gradient descent approach using a progressive training strategy. The unsupervised loss is carefully devised to feature the monotonic property of the objective under maximum power constraints. Comprehensive numerical results demonstrate its generalizability across different network topologies of varying size, density, and channel distribution. Thorough comparisons illustrate the improved performance and robustness of USCA over state-of-the-art benchmarks.