论文标题
搜索轨迹的多目标进化算法网络
Search Trajectories Networks of Multiobjective Evolutionary Algorithms
论文作者
论文摘要
了解多目标进化算法(MOEAS)的搜索动态仍然是一个开放的问题。本文扩展了最新的基于网络的工具,即搜索轨迹网络(STNS),以模拟MOEAS的行为。我们的方法使用了分解的想法,其中多目标问题转化为几个单目标问题。我们证明,使用10个连续的基准问题和3个目标,可以使用STN来模拟和区分两种流行的多目标算法MOEA/D和NSGA-II的搜索行为。我们的发现表明,我们可以使用STN进行算法分析来提高对MOEAS的理解。
Understanding the search dynamics of multiobjective evolutionary algorithms (MOEAs) is still an open problem. This paper extends a recent network-based tool, search trajectory networks (STNs), to model the behavior of MOEAs. Our approach uses the idea of decomposition, where a multiobjective problem is transformed into several single-objective problems. We show that STNs can be used to model and distinguish the search behavior of two popular multiobjective algorithms, MOEA/D and NSGA-II, using 10 continuous benchmark problems with 2 and 3 objectives. Our findings suggest that we can improve our understanding of MOEAs using STNs for algorithm analysis.