论文标题
Meltpoolnet:使用机器学习的金属添加剂制造中的融化池特性预测
MeltpoolNet: Melt pool Characteristic Prediction in Metal Additive Manufacturing Using Machine Learning
论文作者
论文摘要
表征Meltpool形状和几何形状在金属添加剂制造(MAM)中至关重要,以控制印刷过程并避免缺陷。由于MAM工艺的复杂性质,难以根据过程参数和粉末材料来预测基于过程参数和粉末材料的融合缺陷。机器学习(ML)技术可用于将过程参数连接到Meltpool中的缺陷类型。在这项工作中,我们引入了一个综合框架,用于对ML进行融化池特征进行基准测试。已经从80多个MAM文章中收集了一个广泛的实验数据集,其中包含MAM加工条件,材料,Meltpool尺寸,Meltpool模式和缺陷类型。我们引入了物理意识的MAM特征,多功能ML模型和评估指标,以为Meltpool缺陷和几何预测创建一个全面的学习框架。该基准可以作为熔融池控制和过程优化的基础。此外,已经确定了数据驱动的显式模型,可以从过程参数和材料属性中估算熔融几何形状,这些属性的表现超过了Rosenthal的融合几何形状,同时保持了可解释性。
Characterizing meltpool shape and geometry is essential in metal Additive Manufacturing (MAM) to control the printing process and avoid defects. Predicting meltpool flaws based on process parameters and powder material is difficult due to the complex nature of MAM process. Machine learning (ML) techniques can be useful in connecting process parameters to the type of flaws in the meltpool. In this work, we introduced a comprehensive framework for benchmarking ML for melt pool characterization. An extensive experimental dataset has been collected from more than 80 MAM articles containing MAM processing conditions, materials, meltpool dimensions, meltpool modes and flaw types. We introduced physics-aware MAM featurization, versatile ML models, and evaluation metrics to create a comprehensive learning framework for meltpool defect and geometry prediction. This benchmark can serve as a basis for melt pool control and process optimization. In addition, data-driven explicit models have been identified to estimate meltpool geometry from process parameters and material properties which outperform Rosenthal estimation for meltpool geometry while maintaining interpretability.