论文标题
Bloch-Ogus理论用于混合特征的平滑和半稳定方案
Bloch-Ogus theory for smooth and semi-stable schemes in mixed characteristic
论文作者
论文摘要
我们研究了Bloch-Ogus理论和同源性理论的Gersten猜想,具有双重性,尤其是针对基础的残基特征的有限系数的欧特尔共同体,对于混合特征的平滑和半稳定的方案。我们证明了在平滑案例中的猜想,并在半稳定情况下证明了一个特殊情况。作为平滑案例的推论,我们获得了在出色的离散估值环上任意局部环的Galois符号图的溢流性。
We study Bloch-Ogus theory and the Gersten conjecture for homology theories with duality satisfying certain properties, in particular for étale cohomology with finite coefficients coprime to the residue characteristic of the base, for smooth and semi-stable schemes in mixed characteristic. We prove the Gersten conjecture in the smooth case and prove a special case in the semi-stable situation. As a corollary of the smooth case we obtain the surjectivity of the Galois symbol map for arbitrary local rings over an excellent discrete valuation ring.