论文标题

在广义的维也纳有限变化空间上

On the generalized Wiener bounded variation spaces with p-variable

论文作者

Ozbetelashvili, Ani, Zviadadze, Shalva

论文摘要

在本文中,我们通过$ p $ - 变量调查了有限变化的广义维也纳空间。获得了各种结果,例如均匀的凸度和反射性,从该空间中表征了功能不连续点的集合。对于有限的指数,显示每个点中右手和左侧限制的存在。同样,存在一个无界指数,使得在相应的广义界限变化空间中存在一个函数,该函数在某个点上没有右手限制。同样,对于在此空间中的一些广泛的指数中,变化的增强性无法实现。

In this paper, we have investigated the generalized Wiener space of bounded variation with $p$-variable. Various results are obtained such as uniform convexity and reflexivity, there was characterized the set of points of discontinuity of functions from this space. For bounded exponents, it is shown the existence of right and left-hand limits in each point. Also, there is an unbounded exponent such that in corresponding generalized Wiener bounded variation space exists a function that does not have the right-hand limit at a point. Also, for some wide classes of exponents in this space additivity of the variation is not fulfilled.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源