论文标题
使用U-Transformer的广义图像支出
Generalised Image Outpainting with U-Transformer
论文作者
论文摘要
在本文中,我们开发了一种新型的基于变压器的生成对抗神经网络,称为U-Transformer,用于广义图像支出问题。与大多数当前的图像支出方法不同,导致水平外推的方法,我们的广义图像支出可以在给定的图像周围推断出带有合理结构和细节的视觉上下文,即使是复杂的风景,建筑和艺术图像。具体而言,我们将生成器设计为嵌入流行的Swin Transformer块的编码器到码头结构。因此,我们的新型神经网络可以更好地应对图像长期依赖性,这对于广义图像支出至关重要。我们另外提出了一个U形结构和多视图时间空间预测指标(TSP)模块,以加强图像自我重建以及未知的零件预测。通过在测试阶段调整TSP模块中的预测步骤,我们可以在输入子图像的情况下生成任意支出大小。我们在实验上证明,我们提出的方法可以为针对最新图像支出方法产生视觉上吸引的结果。
In this paper, we develop a novel transformer-based generative adversarial neural network called U-Transformer for generalised image outpainting problem. Different from most present image outpainting methods conducting horizontal extrapolation, our generalised image outpainting could extrapolate visual context all-side around a given image with plausible structure and details even for complicated scenery, building, and art images. Specifically, we design a generator as an encoder-to-decoder structure embedded with the popular Swin Transformer blocks. As such, our novel neural network can better cope with image long-range dependencies which are crucially important for generalised image outpainting. We propose additionally a U-shaped structure and multi-view Temporal Spatial Predictor (TSP) module to reinforce image self-reconstruction as well as unknown-part prediction smoothly and realistically. By adjusting the predicting step in the TSP module in the testing stage, we can generate arbitrary outpainting size given the input sub-image. We experimentally demonstrate that our proposed method could produce visually appealing results for generalized image outpainting against the state-of-the-art image outpainting approaches.