论文标题
经典自旋三角的热力学
Thermodynamics of the classical spin triangle
论文作者
论文摘要
由三个带有海森堡相互作用的旋转组成的经典自旋系统是完全可以整合的机械系统的一个示例。在本文中,我们将热力学数量明确计算为状态密度,特定的热量,敏感性和自旋自相关功能。这些计算是(半半)进行的,并证明与相应的蒙特卡洛模拟一致。对于长期自相关函数,我们发现,对于耦合常数的某些值,以$ 1/t $阻尼的谐波振荡的形式衰减对恒定值,并提出了理论上的解释。
The classical spin system consisting of three spins with Heisenberg interaction is an example of a completely integrable mechanical system. In this paper we explicitly calculate thermodynamic quantities as density of states, specific heat, susceptibility and spin autocorrelation functions. These calculations are performed (semi-)analytically and shown to agree with corresponding Monte Carlo simulations. For the long-time autocorrelation function, we find, for certain values of the coupling constants, a decay to constant values in the form of an $1/t$ damped harmonic oscillation and propose a theoretical explanation.