论文标题

一阶代数普通微分方程的合理解决方案

Rational Solutions of First Order Algebraic Ordinary Differential Equations

论文作者

Feng, Shuang, Shen, Li-Yong

论文摘要

令$ f(t,y,y')= \ sum_ {i = 0}^n a_i(t,y)y'^i = 0 $是带有多项式系数的不可约的一阶普通微分方程。 1998年的Eremenko证明了存在一个恒定的$ c $,因此每个合理解决方案$ f(t,y,y')= 0 $的程度不大于$ c $。示例表明,该学位限制的$ c $不仅取决于$ t,y,y'$中的$ f $的学位,而且还取决于$ f $ of $ t,y,y'$的$ f $的系数。在本文中,我们表明,如果$ f $满足$ deg(f,y)<deg(f,y')$或$ \ max_ {i = 0}^n \ {deg(a_i,y)-2(a_i,y)-2(n-i)\}> 0 $,那么$ c $ bung的$ c $仅取决于$ f $ $ f $ $ f $ $ t,y y y y y y y y y'$'$'$,y y'$'$'$'' $ t,y,y'$的$ f $的学位。

Let $f(t,y,y')=\sum_{i=0}^n a_i(t,y)y'^i=0$ be an irreducible first order ordinary differential equation with polynomial coefficients. Eremenko in 1998 proved that there exists a constant $C$ such that every rational solution of $f(t,y,y')=0$ is of degree not greater than $C$. Examples show that this degree bound $C$ depends not only on the degrees of $f$ in $t,y,y'$ but also on the coefficients of $f$ viewed as the polynomial in $t,y,y'$. In this paper, we show that if $f$ satisfies $deg(f,y)<deg(f,y')$ or $\max_{i=0}^n \{deg(a_i,y)-2(n-i)\}>0 $ then the degree bound $C$ only depends on the degrees of $f$ in $t,y,y'$, and furthermore we present an explicit expression for $C$ in terms of the degrees of $f$ in $t,y,y'$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源