论文标题
对核心两个
Additive actions on hyperquadrics of corank two
论文作者
论文摘要
对于$ \ Mathbb {p}^{m} $ dimension $ n $的投射品种$ x $,$ x $上的加法动作是$ \ mathbb {g} _ {a} _ {a}^n} $的有效动作$ \ mathbb {g} _ {a}^{n} $ - 不变性,$ x $的诱导操作具有开放轨道。 Arzhantsev和Popovskiy对Corank 0或1的超分类进行了分类。在本文中,我们对Corank 2的添加剂作用进行分类,其奇异性并非由$ \ MATHBB {G} _ {a} _}^n} $ - 动作固定。
For a projective variety $X$ in $\mathbb{P}^{m}$ of dimension $n$, an additive action on $X$ is an effective action of $\mathbb{G}_{a}^{n}$ on $\mathbb{P}^{m}$ such that $X$ is $\mathbb{G}_{a}^{n}$-invariant and the induced action on $X$ has an open orbit. Arzhantsev and Popovskiy have classified additive actions on hyperquadrics of corank 0 or 1. In this paper, we give the classification of additive actions on hyperquadrics of corank 2 whose singularities are not fixed by the $\mathbb{G}_{a}^{n}$-action.