论文标题

从图像中对行为和精神状态进行机器学习分类的挑战和机会

Challenges and Opportunities for Machine Learning Classification of Behavior and Mental State from Images

论文作者

Washington, Peter, Mutlu, Cezmi Onur, Kline, Aaron, Paskov, Kelley, Stockham, Nate Tyler, Chrisman, Brianna, Deveau, Nick, Surhabi, Mourya, Haber, Nick, Wall, Dennis P.

论文摘要

区分和检测非语言社会人类行为和精神状态的计算机视觉(CV)分类器可以帮助精神病学和行为科学的数字诊断和治疗学。虽然可以使用标准的机器学习管道来开发用于传统和结构化分类任务的简历分类器,用于监督学习,包括数据标记,预处理和培训卷积神经网络,但尝试此过程以进行行为表型。在这里,我们讨论了该领域的挑战和相应的机会,包括处理异质数据,避免有偏见的模型,标记大量和重复的数据集,与模棱两可或复合类标签一起工作,管理隐私问题,创建适当的表示形式以及个性化模型。我们讨论了CV中最新的研究努力,例如数据策展,数据增强,众包标签,积极学习,强化学习,生成模型,代表性学习,联合学习和元学习。我们重点介绍了成像分类器所需的一些机器学习进步,以成功,可靠地检测人类的社交线索。

Computer Vision (CV) classifiers which distinguish and detect nonverbal social human behavior and mental state can aid digital diagnostics and therapeutics for psychiatry and the behavioral sciences. While CV classifiers for traditional and structured classification tasks can be developed with standard machine learning pipelines for supervised learning consisting of data labeling, preprocessing, and training a convolutional neural network, there are several pain points which arise when attempting this process for behavioral phenotyping. Here, we discuss the challenges and corresponding opportunities in this space, including handling heterogeneous data, avoiding biased models, labeling massive and repetitive data sets, working with ambiguous or compound class labels, managing privacy concerns, creating appropriate representations, and personalizing models. We discuss current state-of-the-art research endeavors in CV such as data curation, data augmentation, crowdsourced labeling, active learning, reinforcement learning, generative models, representation learning, federated learning, and meta-learning. We highlight at least some of the machine learning advancements needed for imaging classifiers to detect human social cues successfully and reliably.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源