论文标题

突破性曲线的异常地下传输的非局部内核的机器学习

Machine-learning of nonlocal kernels for anomalous subsurface transport from breakthrough curves

论文作者

Xu, Xiao, D'Elia, Marta, Glusa, Christian, Foster, John T.

论文摘要

由于介质中不同尺度的高度异质性存在,异常行为在地下溶质转运中无处不在。尽管分数模型已被广泛用于描述各种地下应用中的异常运输,但其应用程序受到计算挑战的阻碍。以整合内核和有限相互作用长度为特征的简单非局部模型代表了分数模型的计算可行替代方案。然而,他们的内核功能的明智选择仍然是一个悬而未决的问题。我们提出了一个通用数据驱动的框架,以根据异常地下传输的背景下的非常小且稀疏的数据集发现最佳内核。使用从高尺度粒子密度模拟中恢复的空间稀疏突破曲线,我们使用非局部操作器回归技术学习最佳的粗尺度非局部模型。使用最佳非局部模型获得的突破性曲线的预测,即使在位置和时间间隔不同于用于训练内核的位置和时间间隔,也与精细尺度模拟结果相吻合,证实了所提出算法的出色概括性能。与训练有素的经典模型和黑盒深神经网络的比较证实了所提出模型的预测能力的优势。

Anomalous behavior is ubiquitous in subsurface solute transport due to the presence of high degrees of heterogeneity at different scales in the media. Although fractional models have been extensively used to describe the anomalous transport in various subsurface applications, their application is hindered by computational challenges. Simpler nonlocal models characterized by integrable kernels and finite interaction length represent a computationally feasible alternative to fractional models; yet, the informed choice of their kernel functions still remains an open problem. We propose a general data-driven framework for the discovery of optimal kernels on the basis of very small and sparse data sets in the context of anomalous subsurface transport. Using spatially sparse breakthrough curves recovered from fine-scale particle-density simulations, we learn the best coarse-scale nonlocal model using a nonlocal operator regression technique. Predictions of the breakthrough curves obtained using the optimal nonlocal model show good agreement with fine-scale simulation results even at locations and time intervals different from the ones used to train the kernel, confirming the excellent generalization properties of the proposed algorithm. A comparison with trained classical models and with black-box deep neural networks confirms the superiority of the predictive capability of the proposed model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源