论文标题
radon-nikodym定理相对于$(ρ,q)$ - $ \ bbb z_p $
Radon-Nikodym theorem with respect to $(ρ,q)$-measure on $\Bbb Z_p$
论文作者
论文摘要
Araci等。引入了$ p $ -ADIC $(ρ,Q)$ - HAAR分销的类似物。通过分配,他们构建了$ p $ -ADIC $(ρ,Q)$ - Volkenborn积分。在本文中,凭借连续功能的Mahler扩展,作者就$ \ bbb z_p $上的$ p $ -Adic $(ρ,q)$ - 分配了Radon-Nikodym定理。
Araci et al. introduced a $p$-adic $(ρ,q)$-analogue of the Haar distribution. By means of the distribution, they constructed the $p$-adic $(ρ,q)$-Volkenborn integral. In this paper, by virtue of the Mahler expansion of continuous functions, the author gives the Radon-Nikodym theorem with respect to the $p$-adic $(ρ,q)$-distribution on $\Bbb Z_p$.