论文标题

一种基于内核的方法,用于建模高斯流程,并使用功能信息

A Kernel-Based Approach for Modelling Gaussian Processes with Functional Information

论文作者

Brown, D. Andrew, Kiessler, Peter, Nicholson, John

论文摘要

高斯流程(GPS)是用于建模和预测物理和工程科学连续过程的无处不在的工具。这部分是由于这样一个事实,即人们可以使用高斯工艺作为插装器,同时促进其他位置的直接不确定性量化。除了培训数据外,有时还没有以有限的积分收集的形式可用信息。例如,边界价值问题包含有关域边界或基​​础物理的信息,导致了感兴趣域的整个无数子集的已知行为。虽然可以通过已知子集中的伪训练点获得与此类已知信息的近似值,但这种过程是临时的,几乎没有指导使用的点数,也没有作为伪观察数量的行为增长。我们提出和构建高斯流程,通过再现核心希尔伯特空间,统一典型的有限培训数据案例,其案例是通过利用希尔伯特空间中有条件的期望和正交预测的等效性来获得无数信息。我们显示了拟议过程的存在,并确定这是以越来越多的训练点为条件的常规GP的限制。我们通过数值实验说明了我们提出的方法的灵活性和优势。

Gaussian processes (GPs) are ubiquitous tools for modeling and predicting continuous processes in physical and engineering sciences. This is partly due to the fact that one may employ a Gaussian process as an interpolator while facilitating straightforward uncertainty quantification at other locations. In addition to training data, it is sometimes the case that available information is not in the form of a finite collection of points. For example, boundary value problems contain information on the boundary of a domain, or underlying physics lead to known behavior on an entire uncountable subset of the domain of interest. While an approximation to such known information may be obtained via pseudo-training points in the known subset, such a procedure is ad hoc with little guidance on the number of points to use, nor the behavior as the number of pseudo-observations grows large. We propose and construct Gaussian processes that unify, via reproducing kernel Hilbert space, the typical finite training data case with the case of having uncountable information by exploiting the equivalence of conditional expectation and orthogonal projections in Hilbert space. We show existence of the proposed process and establish that it is the limit of a conventional GP conditioned on an increasing number of training points. We illustrate the flexibility and advantages of our proposed approach via numerical experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源