论文标题

三角矩阵代数中的特殊周期

Exceptional cycles in triangular matrix algebras

论文作者

Guo, Peng

论文摘要

带有SERRE函子的三角类别中的特殊周期是球形对象的概括。假设$ a $ and $ b $是戈伦斯坦代数,给定一个完美的$ n $ n $ -cycle $ e _*$ in $ k^b(a \ mbox { - } { - } {\ rm proj})$,一个完美的异常$ $ m $ m $ m $ m $ -cycre $ f _*in $ k^b(b \ k^b(b \ mbox wer) $ a $ - $ b $ -bimodule $ n $,并证明产品$ e _*\ boxtimes f _*$是$ k^b(λ\ mbox { - } {\ mbox { - } {\ rm proj})$ k^b(λ\ mbox {\ rm proj})$ cyper in $ k^b(weny $λ= \λ= \ pmatrix {使用这种结构,人们获得了许多新的特殊周期,这些周期以前是某些类别的代数。

An exceptional cycle in a triangulated category with Serre functor is a generalization of a spherical object. Suppose that $A$ and $B$ are Gorenstein algebras, given a perfect exceptional $n$-cycle $E_*$ in $K^b(A\mbox{-}{\rm proj})$ and a perfect exceptional $m$-cycle $F_*$ in $K^b(B\mbox{-}{\rm proj})$, we construct an $A$-$B$-bimodule $N$, and prove the product $E_*\boxtimes F_*$ is an exceptional $(n+m-1)$-cycle in $K^b(Λ\mbox{-}{\rm proj})$, where $Λ=\begin{pmatrix}A & N\\ 0 & B \end{pmatrix}$. Using this construction, one gets many new exceptional cycles which is unknown before for certain class of algebras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源