论文标题

实验知情的连续晶界模型

An Experimentally Informed Continuum Grain Boundary Model

论文作者

Ansari, Syed, Acharya, Amit, Alankar, Alankar

论文摘要

开发了连续晶界模型,该模型使用实验测量的晶界能数据作为不良方向的函数来模拟1-D晶粒阵列中理想化的晶界演化。该模型以方向的空间梯度为基本领域,使用不良方向的连续表示。所采用的晶界能量密度是基于物理基础的该方向梯度中的非凸。能量的简单梯度下降动力学用于理想化的微观结构演化,这需要对模型良好的能量密度进行高阶正则化。正则化是合理的。使用两个合理的能量密度函数提出了微观结构的演化,这些函数均根据相同的实验数据定义:“平滑”和“ cuSP”能量密度。给出了晶界平衡和微观结构演化的结果,代表一个空间维度中的晶粒重新定位。表明代表共同数据集的能量密度函数的不同形状显示导致系统的总体微观结构演变。从数学上讲,构造的能量功能正式为Aviles-giga/cross-newell类型,但具有不平等的良好深度,从而导致溶液的结构特征差异,可以用晶界来识别,以及与相同初始条件的平衡方法。这项研究还研究了晶界的基本率。它支持一般的热力学信念,即它们持续长时间,然后由于无限时间波动所青睐的最低能量配置而最终消失。

A continuum grain boundary model is developed that uses experimentally measured grain boundary energy data as a function of misorientation to simulate idealized grain boundary evolution in a 1-D grain array. The model uses a continuum representation of the misorientation in terms of spatial gradients of the orientation as a fundamental field. The grain boundary energy density employed is non-convex in this orientation gradient, based on physical grounds. Simple gradient descent dynamics of the energy are utilized for idealized microstructure evolution, which requires higher-order regularization of the energy density for the model to be well-set; the regularization is physically justified. Microstructure evolution is presented using two plausible energy density functions, both defined from the same experimental data: a 'smooth' and a 'cusp' energy density. Results of grain boundary equilibria and microstructure evolution representing grain reorientation in one space dimension are presented. The different shapes of the energy density functions representing a common data set are shown to result in different overall microstructural evolution of the system. Mathematically, the constructed energy functional formally is of the Aviles-Giga/Cross-Newell type but with unequal well-depths, resulting in a difference in the structural feature of solutions that can be identified with grain boundaries, as well as in the approach to equilibria from identical initial conditions. This study also investigates the metastability of grain boundaries. It supports the general thermodynamics belief that they persist for extended periods before eventually vanishing due to the lowest energy configuration favored by fluctuations over infinite time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源