论文标题

在合奏Kalman倒置中进行定位

Localization in Ensemble Kalman inversion

论文作者

Tong, Xin T., Morzfeld, Matthias

论文摘要

集合Kalman倒置(EKI)是用于反问题的数值解决方案的技术。 EKI的合奏方法的一个很大优势是实施中不需要衍生物。但是从理论上讲,Eki的整体规模需要超过问题的维度。这是因为Eki的“子空间属性”,即Eki解决方案是初始合奏开始的线性组合。我们表明,当应用“本地化”时,合奏可能会突破此初始子空间。从本质上讲,本地化将假定的相关结构在问题上实施,并在集合卡尔曼过滤和数据同化中大量使用。我们描述和分析了如何将本地化应用于EKI,以及本地化如何帮助EKI集成爆破最初的子空间。具体而言,我们表明本地化的Eki(Leki)集合将崩溃到一个点(按预期),并且Leki集合平均值将在均方根速率下汇聚到全局最佳距离。在对本地化程序和观察过程的严格假设下,我们进一步表明数据失调均匀衰减。我们用简化的玩具问题,洛伦兹模型和电磁数据的反转来说明我们的思想和理论发展,其中我们的某些数学假设可能只有近似有效。

Ensemble Kalman inversion (EKI) is a technique for the numerical solution of inverse problems. A great advantage of the EKI's ensemble approach is that derivatives are not required in its implementation. But theoretically speaking, EKI's ensemble size needs to surpass the dimension of the problem. This is because of EKI's "subspace property", i.e., that the EKI solution is a linear combination of the initial ensemble it starts off with. We show that the ensemble can break out of this initial subspace when "localization" is applied. In essence, localization enforces an assumed correlation structure onto the problem, and is heavily used in ensemble Kalman filtering and data assimilation. We describe and analyze how to apply localization to the EKI, and how localization helps the EKI ensemble break out of the initial subspace. Specifically, we show that the localized EKI (LEKI) ensemble will collapse to a single point (as intended) and that the LEKI ensemble mean will converge to the global optimum at a sublinear rate. Under strict assumptions on the localization procedure and observation process, we further show that the data misfit decays uniformly. We illustrate our ideas and theoretical developments with numerical examples with simplified toy problems, a Lorenz model, and an inversion of electromagnetic data, where some of our mathematical assumptions may only be approximately valid.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源