论文标题

关键时期的分支过程建模流行量通过遏制措施

Critical time-dependent branching process modelling epidemic spreading with containment measures

论文作者

Sun, Hanlin, Kryven, Ivan, Bianconi, Ginestra

论文摘要

在共同的大流行期间,通过遏制措施减轻了疾病指数生长的时期,这些措施在不同的情况下导致了病例数量的幂律增长。从2020年春末数据获得了Ziff和Ziff在参考文献中获得的第一个观察。 [1]。在这一重要的观察之后,在封闭范围的封闭期间,在其他国家也观察到了幂律缩放(尽管有不同的指数)。这些结果的早期解释表明,这种现象可能是由于扩散的空间效应。在这里,我们表明,由于遏制措施引起的个人感染性的时间调节也可能导致病例数量随着时间的流逝而导致幂律的增长。为此,我们提出了一种随机混合的易感感染的易感性感染的(SIR)模型的流行病扩散模型,在存在遏制测量中,导致时间依赖性感染性,我们探索了关键时期分支过程的统计特性。我们表明,在关键时期,可以观察到指数在一到两个之间的案例数量的幂律增长。我们的渐近分析结果通过广泛的蒙特卡洛模拟证实。尽管这些结果并不排除空间效应在调节关键案件数量的幂律增长方面可能很重要,但是这项工作表明,即使混合良好的人群也可能已经以临界时的非平凡幂律指数为特征。

During the COVID pandemic, periods of exponential growth of the disease have been mitigated by containment measures that in different occasions have resulted in a power-law growth of the number of cases. The first observation of such behaviour has been obtained from 2020 late spring data coming from China by Ziff and Ziff in Ref. [1]. After this important observation the power-law scaling (albeit with different exponents) has also been observed in other countries during periods of containment of the spread. Early interpretations of these results suggest that this phenomenon might be due to spatial effects of the spread. Here we show that temporal modulations of infectivity of individuals due to containment measures can also cause power-law growth of the number of cases over time. To this end we propose a stochastic well-mixed Susceptible-Infected-Removed (SIR) model of epidemic spreading in presence of containment measures resulting in time-dependent infectivity and we explore the statistical properties of the resulting branching process at criticality. We show that at criticality it is possible to observe power-law growth of the number of cases with exponents ranging between one and two. Our asymptotic analytical results are confirmed by extensive Monte Carlo simulations. Although these results do not exclude that spatial effects might be important in modulating the power-law growth of the number of cases at criticality, this work shows that even well-mixed populations may already feature non-trivial power-law exponents at criticality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源