论文标题

较弱的近端正常结构和最佳近端对的表征

A Characterization of Weak Proximal Normal Structure and Best Proximity Pairs

论文作者

Digar, Abhik, García, Rafael Espínola, Kosuru, G. Sankara Raju

论文摘要

本文的目的是解决[Kirk,W。A.,Shahzad,Naseer,正常结构和轨道固定点条件,J。Math。肛门。应用。 {\ bf {vol 463(2)}},(2018)461--476]。我们使用最佳近端对特性给出了弱近端正常结构的表征。我们还介绍了一个旋转循环收缩WRT轨道的概念,并在其中证明了在反射性Banach空间的环境中存在最佳接近对。

The aim of this paper is to address an open problem given in [Kirk, W. A., Shahzad, Naseer, Normal structure and orbital fixed point conditions, J. Math. Anal. Appl. {\bf{vol 463(2)}}, (2018) 461--476]. We give a characterization of weak proximal normal structure using best proximity pair property. We also introduce a notion of pointwise cyclic contraction wrt orbits and therein prove the existence of a best proximity pair in the setting of reflexive Banach spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源