论文标题
关于埃尔德斯的猜想
On a conjecture of Erdős
论文作者
论文摘要
令$ \ Mathcal {p} $表示所有素数的集合。在1950年,P。erdős指出,如果$ c $是任意给出的常数,则$ x $足够大,$ a_1,\ dots,a_t $是正整数,带有$ a_1 <a_2 <a_2 <a_2 <\ cdot \ cdot \ cdot \ cdot \ cdot <a_t <a_t <a_t \ a_t \ leqslant x $和$ t> $ n = p+a_i $ $(p \ in \ mathcal {p},1 \ le i \ le t)$大于$ c $。在本说明中,我们确认了这种旧的Erdős的猜想。
Let $\mathcal{P}$ denote the set of all primes. In 1950, P. Erdős conjectured that if $c$ is an arbitrarily given constant, $x$ is sufficiently large and $a_1,\dots , a_t$ are positive integers with $a_1<a_2<\cdot\cdot\cdot<a_t\leqslant x$ and $t>\log x$, then there exists an integer $n$ so that the number of solutions of $n=p+a_i$ $(p\in \mathcal{P}, 1\le i\le t)$ is greater than $c$. In this note, we confirm this old conjecture of Erdős.