论文标题

树脱位图和嵌套依赖的随机选择

Tree-degenerate graphs and nested dependent random choice

论文作者

Jiang, Tao, Longbrake, Sean

论文摘要

著名的依赖随机选择Lemma指出,在二分图中,平均顶点(按其程度加权)的属性几乎所有小的子集$ s $在其附近的邻居几乎与相同边缘密度的随机图一样大。引理的两个众所周知的应用如下。第一个是Füredi和Alon,Krivelevich和Sudakov的定理,表明$ n $ vertex Graph中的最大边数不包含一个固定的两部分图,最多最高$ r $在一侧为$ o(n^{2-1/r})$。 Grzesik,Janzer和Nagy最近将其扩展到了所谓的$(R,T)$ - 一棵树的炸弹。第二个应用程序是Conlon,Fox和Sudakov的定理,证实了一种特殊情况的猜想和Simonovits和Sidorenko的特殊情况,表明,如果$ h $是包含另一个角度的两部分图形,则包含另一个零件的顶点,而$ g $是一个图形,然后是$ v的可能性,至少是$ v($ v(Hom)$ v(Hom $ v(g)$ v(h) $ \ left [\ frac {2 | e(g)|} {| v(g)|^2} \ right]^{| e(h)|} $。 在本说明中,我们引入了依赖的随机选择引理的嵌套变体,这可能具有独立的兴趣。然后,我们将其应用于Conlon,Fox和Sudakov定理的共同扩展以及Grzesik,Janzer和Nagy的定理,涉及所谓的树脱位图的Turán和Sidorenko特性。

The celebrated dependent random choice lemma states that in a bipartite graph an average vertex (weighted by its degree) has the property that almost all small subsets $S$ in its neighborhood has common neighborhood almost as large as in the random graph of the same edge-density. Two well-known applications of the lemma are as follows. The first is a theorem of Füredi and of Alon, Krivelevich, and Sudakov showing that the maximum number of edges in an $n$-vertex graph not containing a fixed bipartite graph with maximum degree at most $r$ on one side is $O(n^{2-1/r})$. This was recently extended by Grzesik, Janzer and Nagy to the family of so-called $(r,t)$-blowups of a tree. A second application is a theorem of Conlon, Fox, and Sudakov, confirming a special case of a conjecture of Erdős and Simonovits and of Sidorenko, showing that if $H$ is a bipartite graph that contains a vertex complete to the other part and $G$ is a graph then the probability that the uniform random mapping from $V(H)$ to $V(G)$ is a homomorphismis at least $\left[\frac{2|E(G)|}{|V(G)|^2}\right]^{|E(H)|}$. In this note, we introduce a nested variant of the dependent random choice lemma, which might be of independent interest. We then apply it to obtain a common extension of the theorem of Conlon, Fox, and Sudakov and the theorem of Grzesik, Janzer, and Nagy, regarding Turán and Sidorenko properties of so-called tree-degenerate graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源