论文标题

关于蒙哥马利 - 奥德利佐科​​关于zeta功能零之间差距的差距

On the Montgomery-Odlyzko method regarding gaps between zeros of the zeta-function

论文作者

Goldston, Daniel A., Trudgian, Timothy S., Turnage-Butterbaugh, Caroline L.

论文摘要

假设假设有假设,众所周知,在平均间距的0.515396倍以内,连续许多连续的Riemann Zeta功能对。这是使用Montgomery和Odlyzko方法获得的。我们证明,这种方法永远无法在平均间距的0.5042倍以内找到无限的连续零对。

Assuming the Riemann Hypothesis, it is known that there are infinitely many consecutive pairs of zeros of the Riemann zeta-function within 0.515396 times the average spacing. This is obtained using the method of Montgomery and Odlyzko. We prove that this method can never find infinitely many pairs of consecutive zeros within 0.5042 times the average spacing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源