论文标题
羊乳酪:基于触摸的身份验证的公平评估
FETA: Fair Evaluation of Touch-based Authentication
论文作者
论文摘要
在本文中,我们研究了基于触摸动态的身份验证系统评估的常见陷阱。我们考虑导致歪曲性能的不同因素,与既定的系统和威胁模型不兼容,或阻碍了与先前工作的可重复性和可比性。具体而言,我们研究了(i)小样本量(用户数量和记录会话的数量),(ii)在培训数据中使用不同的电话模型,(iii)选择非连续培训数据,(iv)在培训数据中插入攻击者样本和(v)滑动汇总。我们对30次触摸动力学论文进行了系统的评论,表明所有触摸纸至少忽略了其中一个陷阱。为了量化每个陷阱的效果,我们设计了一组实验,并在31天内收集了来自515个用户的触摸交互的新纵向数据集,其中包括1,194,451个独特的笔触。这些数据的一部分是使用Android设备在LAB中收集的,其余的则使用iOS设备远程收集,从而使我们可以进行深入的比较。我们将此数据集和我们的代码在线提供。我们的结果显示,几个陷阱报告的平均EER百分比变化很大:包括攻击者数据(2.55%),无连续培训数据(3.8%)和电话模型混合(3.2%-5.8%)。我们表明,在常见的评估环境中,这些评估选择的累积效应导致综合差异为8.9%。我们还在整个ROC曲线中也很大程度上观察了这些效果。陷阱在四个不同的分类器中评估 - SVM,随机森林,神经网络和KNN。此外,在构建基于触摸的身份验证系统并量化其影响时,我们还探讨了公平评估的其他注意事项。基于这些见解,我们提出了一系列最佳实践,这些实践将导致该领域结果的更现实和可比较的报告。
In this paper, we investigate common pitfalls affecting the evaluation of authentication systems based on touch dynamics. We consider different factors that lead to misrepresented performance, are incompatible with stated system and threat models or impede reproducibility and comparability with previous work. Specifically, we investigate the effects of (i) small sample sizes (both number of users and recording sessions), (ii) using different phone models in training data, (iii) selecting non-contiguous training data, (iv) inserting attacker samples in training data and (v) swipe aggregation. We perform a systematic review of 30 touch dynamics papers showing that all of them overlook at least one of these pitfalls. To quantify each pitfall's effect, we design a set of experiments and collect a new longitudinal dataset of touch interactions from 515 users over 31 days comprised of 1,194,451 unique strokes. Part of this data is collected in-lab with Android devices and the rest remotely with iOS devices, allowing us to make in-depth comparisons. We make this dataset and our code available online. Our results show significant percentage-point changes in reported mean EER for several pitfalls: including attacker data (2.55%), non-contiguous training data (3.8%) and phone model mixing (3.2%-5.8%). We show that, in a common evaluation setting, the cumulative effects of these evaluation choices result in a combined difference of 8.9% EER. We also largely observe these effects across the entire ROC curve. The pitfalls are evaluated on four distinct classifiers - SVM, Random Forest, Neural Network, and kNN. Furthermore, we explore additional considerations for fair evaluation when building touch-based authentication systems and quantify their impacts. Based on these insights, we propose a set of best practices that, will lead to more realistic and comparable reporting of results in the field.