论文标题

Sphere2VEC:在球形表面上学习地理空间预测的多尺度表示

Sphere2Vec: Multi-Scale Representation Learning over a Spherical Surface for Geospatial Predictions

论文作者

Mai, Gengchen, Xuan, Yao, Zuo, Wenyun, Janowicz, Krzysztof, Lao, Ni

论文摘要

在2D空间中为要点生成学习友好的表示是机器学习中的一个基本问题。最近,提出了多尺度编码方案(例如Space2Vec)将2D空间中的任何点作为高维矢量进行编码,并已成功应用于各种(GEO)空间预测任务。但是,将编码模型应用于大型现实世界GPS坐标数据集(例如,在世界各地拍摄的物种图像)时,地图投影失真问题会增加 - 所有当前的位置编码模型都是为2D(Euclidean)空间中的编码点而设计的,而不是在球面上,例如球形表面,例如,地球表面。为了解决此问题,我们提出了一个称为Sphere2V EC的多尺度位置编码模型,该模型直接编码球形表面上的点坐标,同时避免了映射变形问题。我们提供了理论上的证据,表明Sphere2VEC编码可以保留任何两个点之间的球形表面距离。我们还基于双傅里叶球(DFS)开发了在球体上编码距离的统一视图。我们将Sphere2V EC应用于地理学图像分类任务。我们的分析表明,Sphere2V EC胜过其他2D空间位置编码器模型,尤其是在极地区域和数据范围内的图像分类任务,因为它具有球形表面距离保存的性质。

Generating learning-friendly representations for points in a 2D space is a fundamental and long-standing problem in machine learning. Recently, multi-scale encoding schemes (such as Space2Vec) were proposed to directly encode any point in 2D space as a high-dimensional vector, and has been successfully applied to various (geo)spatial prediction tasks. However, a map projection distortion problem rises when applying location encoding models to large-scale real-world GPS coordinate datasets (e.g., species images taken all over the world) - all current location encoding models are designed for encoding points in a 2D (Euclidean) space but not on a spherical surface, e.g., earth surface. To solve this problem, we propose a multi-scale location encoding model called Sphere2V ec which directly encodes point coordinates on a spherical surface while avoiding the mapprojection distortion problem. We provide theoretical proof that the Sphere2Vec encoding preserves the spherical surface distance between any two points. We also developed a unified view of distance-reserving encoding on spheres based on the Double Fourier Sphere (DFS). We apply Sphere2V ec to the geo-aware image classification task. Our analysis shows that Sphere2V ec outperforms other 2D space location encoder models especially on the polar regions and data-sparse areas for image classification tasks because of its nature for spherical surface distance preservation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源