论文标题
在特殊复杂表面上的自助扬米尔米尔斯字段上
On self-dual Yang-Mills fields on special complex surfaces
论文作者
论文摘要
我们将自动划分的Yang-Mills字段的平面杨和纽曼方程的概括推向了(当地)的(在当地)的Kahler Riemannian 4-Manifolds。结果也适用于爱因斯坦指标(其完整曲率不一定是自动划分的)。我们以反向篮板转换的形式分析了隐藏对称性的可能性,并且我们仅在几何形状是合成半尾部的情况下发现了一个连续的隐藏对称性组。没有假设。
We derive a generalization of the flat space Yang's and Newman's equations for self-dual Yang-Mills fields to (locally) conformally Kahler Riemannian 4-manifolds. The results also apply to Einstein metrics (whose full curvature is not necessarily self-dual). We analyse the possibility of hidden symmetries in the form of Backlund transformations, and we find a continuous group of hidden symmetries only for the case in which the geometry is conformally half-flat. No isometries are assumed.