论文标题

加权奇偶校验 - 检查具有状态和不对称通道的通道的代码

Weighted Parity-Check Codes for Channels with State and Asymmetric Channels

论文作者

Ling, Chih Wei, Liu, Yanxiao, Li, Cheuk Ting

论文摘要

在本文中,我们引入了一种新的代码,称为加权奇偶校验检查代码,其中每个奇偶校验检查位的权重表明其可能性是一个的可能性(而不是修复每个奇偶校验 - 检查位为零)。它适用于广泛的设置,例如不对称渠道,具有状态和/或成本限制的渠道以及Wyner-ZIV问题,并可以实现能力。对于具有状态(Gelfand-Pinsker)设置的频道,与嵌套线性代码相比,建议的编码方案具有两个优点。首先,它可以实现任何通道的能力(例如不对称通道)。其次,仿真结果表明,与嵌套线性代码相比,提出的代码达到了较小的错误率。我们还讨论了一种稀疏的结构,可以将信念传播算法应用于提高编码效率。

In this paper, we introduce a new class of codes, called weighted parity-check codes, where each parity-check bit has a weight that indicates its likelihood to be one (instead of fixing each parity-check bit to be zero). It is applicable to a wide range of settings, e.g. asymmetric channels, channels with state and/or cost constraints, and the Wyner-Ziv problem, and can provably achieve the capacity. For the channels with state (Gelfand-Pinsker) setting, the proposed coding scheme has two advantages compared to the nested linear code. First, it achieves the capacity of any channel with state (e.g. asymmetric channels). Second, simulation results show that the proposed code achieves a smaller error rate compared to the nested linear code. We also discuss a sparse construction where the belief propagation algorithm can be applied to improve the coding efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源