论文标题
负回答:嘈杂的心理心电图信号分类方案
Negative-ResNet: Noisy Ambulatory Electrocardiogram Signal Classification Scheme
论文作者
论文摘要
通过最近在计算机视觉和一般信号处理中进行深度学习的成功应用,深度学习显示了医疗信号处理中的许多独特优势。但是,数据标记质量已成为AI应用程序最重要的问题之一,尤其是当它需要域知识(例如医疗图像标签)时。此外,实际数据集中可能会有嘈杂的标签,这可能会损害神经网络的训练过程。在这项工作中,我们提出了一种半监督的算法,用于通过执行选定的积极学习(PL)和负面学习(NL)来训练具有嘈杂标签的数据样本。为了验证所提出的方案的有效性,我们设计了一种便携式ECG补丁 - iRealCare-并将算法应用于现实生活数据集。我们的实验结果表明,我们可以达到91.0%的精度,比Resnet的正常训练过程高6.2%。我们的数据集中有65例患者,我们随机选择了2名患者进行验证。
With recently successful applications of deep learning in computer vision and general signal processing, deep learning has shown many unique advantages in medical signal processing. However, data labelling quality has become one of the most significant issues for AI applications, especially when it requires domain knowledge (e.g. medical image labelling). In addition, there might be noisy labels in practical datasets, which might impair the training process of neural networks. In this work, we propose a semi-supervised algorithm for training data samples with noisy labels by performing selected Positive Learning (PL) and Negative Learning (NL). To verify the effectiveness of the proposed scheme, we designed a portable ECG patch -- iRealCare -- and applied the algorithm on a real-life dataset. Our experimental results show that we can achieve an accuracy of 91.0 %, which is 6.2 % higher than a normal training process with ResNet. There are 65 patients in our dataset and we randomly picked 2 patients to perform validation.