论文标题
高吞吐量逆设计和功能的贝叶斯优化:二维化合物中的自旋分裂
High throughput inverse design and Bayesian optimization of functionalities: spin splitting in two-dimensional compounds
论文作者
论文摘要
自旋设备的开发需要具有某种自旋分裂(SS)的材料。在此数据描述符中,我们在2D材料中构建了一个从头算的数据库。除此之外,我们还提出了用于整合逆设计方法和贝叶斯推理优化的材料设计的工作流程。我们将SS原型用于自旋应用程序的预测作为所提出的工作流程的说明性示例。预测过程始于建立设计原理(目标特性背后的物理机制),这些原理被用作材料筛选的过滤器,然后是密度功能理论(DFT)计算。将此过程应用于C2DB数据库,我们根据价和/或传导带的SS类型识别和对358 2D材料进行分类。贝叶斯优化捕获了用于潜在的旋转应用程序的带隙和SS的理想条件的2D材料的合理设计的趋势。我们的工作流程可以应用于任何其他材料属性。
The development of spintronic devices demands the existence of materials with some kind of spin splitting (SS). In this Data Descriptor, we build a database of ab initio calculated SS in 2D materials. More than that, we propose a workflow for materials design integrating an inverse design approach and a Bayesian inference optimization. We use the prediction of SS prototypes for spintronic applications as an illustrative example of the proposed workflow. The prediction process starts with the establishment of the design principles (the physical mechanism behind the target properties), that are used as filters for materials screening, and followed by density functional theory (DFT) calculations. Applying this process to the C2DB database, we identify and classify 358 2D materials according to SS type at the valence and/or conduction bands. The Bayesian optimization captures trends that are used for the rationalized design of 2D materials with the ideal conditions of band gap and SS for potential spintronics applications. Our workflow can be applied to any other material property.