论文标题
变形BMS代数的超对称性
Supersymmetrization of deformed BMS algebras
论文作者
论文摘要
$ w(a,b)$和$ w(a,b; \ bar {a},\ bar {b})$代数是$ {\ mathfrak {bms} _3} $和$ {\ mathfrak {\ mathfrak {bms} _44} _4} $ algebra的变形。我们提出了$ w(a,b)$和$ W(a,b)和$ w(a,b; \ bar {a},\ bar {b})$ sulgebra的$ w(a,b)$ supersymmetric扩展的$ \ mathcal {n} = 2 $ supersymmetric扩展,在存在$ r- $ symmetry symmetry发电机的情况下,$ w(a,b)和$ w(a,b)和$ w(a,b)$和$ w(a,b)$ sumpermmetric扩展。对于$ W(a,b)$,我们的建筑包括代数的大多数通用中央扩展。特别是,我们发现$ \ Mathcal {n} = 2 $ $ {\ Mathfrak {bms} _3} $ algebra接纳了一种新的中央扩展名,到目前为止,文献中还没有报道过。对于$ w(a,b; \ bar {a},\ bar {b})$,我们发现无限的$ u(1)_v \ times u(times u(1)_a $ the代数的扩展是线性和二次结构常数,用于变形参数的通用值。这意味着$ u(1)_v \ times u(1)_a $扩展的$ \ mathcal {n} = 2 $ $ {\ mathfrak {bms} _4} $ algebra的限制类似。
$W(a,b)$ and $W(a,b;\bar{a},\bar{b})$ algebras are deformations of ${\mathfrak{bms}_3}$ and ${\mathfrak{bms}_4}$ algebra respectively. We present an $\mathcal{N}=2$ supersymmetric extension of $W(a,b)$ and $W(a,b;\bar{a},\bar{b})$ algebra in presence of $R-$symmetry generators that rotate the two supercharges. For $W(a,b)$ our construction includes most generic central extensions of the algebra. In particular we find that $\mathcal{N}=2$ ${\mathfrak{bms}_3}$ algebra admits a new central extension that has so far not been reported in the literature. For $W(a,b;\bar{a},\bar{b})$, we find that an infinite $U(1)_V \times U(1)_A$ extension of the algebra is not possible with linear and quadratic structure constants for generic values of the deformation parameters. This implies a similar constraint for $U(1)_V \times U(1)_A$ extension of $\mathcal{N}=2$ ${\mathfrak{bms}_4}$ algebra.