论文标题

邀请更高的Arity科学

An Invitation to Higher Arity Science

论文作者

Zapata-Carratala, Carlos, Arsiwalla, Xerxes D.

论文摘要

分析思维以二元思想为主。从成对的相互作用到代数操作,再到过程组成,再到网络模型,二进制结构都深深地根深蒂固,这是大多数当前科学范式的结构。在本文中,我们将Arity介绍为离散实体集合之间互动顺序的一般概念化,并认为有一个丰富的较高的Arity思想等待二进制的宇宙等待探索。为了说明这一点,我们讨论了在广泛的研究领域中出现的几种高阶现象,特别注意三元相互作用的实例。从形式的科学和数学的角度来看,更高的Arity思维打开了代数,符号积分和逻辑的新范式。特别是,我们深入研究了三元结构的特殊情况,因为这本身会揭示出充足的惊喜:联想性的新概念(或缺乏)在三次矩阵的三元操作中,三元同构和三元关系,3-lie代数的整合问题,3-lie代数的整合问题,以及3-均匀超级施加的固定性。所有这些都是开放的问题,强烈表明需要开发新的三元数学。最后,我们评论了潜在的未来研究方向,并评论了更高的Arity科学的跨学科性质。

Analytical thinking is dominated by binary ideas. From pair-wise interactions, to algebraic operations, to compositions of processes, to network models, binary structures are deeply ingrained in the fabric of most current scientific paradigms. In this article we introduce arity as the generic conceptualization of the order of an interaction between a discrete collection of entities and argue that there is a rich universe of higher arity ideas beyond binarity waiting to be explored. To illustrate this we discuss several higher order phenomena appearing in a wide range of research areas, paying special attention to instances of ternary interactions. From the point of view of formal sciences and mathematics, higher arity thinking opens up new paradigms of algebra, symbolic calculus and logic. In particular, we delve into the special case of ternary structures, as that itself reveals ample surprises: new notions of associativity (or lack thereof) in ternary operations of cubic matrices, ternary isomorphisms and ternary relations, the integration problem of 3-Lie algebras, and generalizations of adjacency in 3-uniform hypergraphs. All these are open problems that strongly suggest the need to develop new ternary mathematics. Finally, we comment on potential future research directions and remark on the transdisciplinary nature of higher arity science.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源