论文标题
在磁场中带电粒子的量子布朗运动中的长时间尾巴
Long Time Tails in Quantum Brownian Motion of a charged particle in a magnetic field
论文作者
论文摘要
我们使用量子Langevin方程作为起点,在磁场存在下,在磁场的存在下,在谐波电位中分析了带电量子的长时间尾巴。我们分析了位置自相关函数,位置 - 速度相关函数和速度自相关功能的长时间尾巴。我们研究了通过位置坐标耦合的棕色粒子与欧姆和Drude浴的相关性。在有限的温度下,我们注意到围绕热时间尺度\ frac {\ hbar} {k_b t}围绕幂律到指数衰减的行为的交叉。我们在研究带电的量子粒子的研究中分析了回旋频率的外观如何影响长时间尾巴的行为,并将其与中性量子布朗尼粒子的情况进行对比。
We analyse the long time tails of a charged quantum Brownian particle in a harmonic potential in the presence of a magnetic field using the Quantum Langevin Equation as a starting point. We analyse the long time tails in the position autocorrelation function, position-velocity correlation function and velocity autocorrelation function. We study these correlations for a Brownian particle coupled to the Ohmic and Drude baths, via position coordinate coupling. At finite temperatures we notice a crossover from a power-law to an exponentially decaying behaviour around the thermal time scale \frac{\hbar}{K_B T} . We analyse how the appearance of the cyclotron frequency in our study of a charged quantum Brownian particle affects the behaviour of the long time tails and contrast it with the case of a neutral quantum Brownian particle.