论文标题

在任务和运动计划中学习几何限制

Learning Geometric Constraints in Task and Motion Planning

论文作者

Ren, Tianyu, Cowen-Rivers, Alexander Imani, Ammar, Haitham Bou, Peters, Jan

论文摘要

在任务和运动计划中搜索几何参数的绑定(TAMP)是具有高维决策空间的有限摩托随机计划问题。机器人操纵器只能在其整个范围的子空间中移动,并受到许多几何约束。在为每个任务找到可行的绑定集之前,通常会进行许多探索。有利于一次学习这些约束,然后通过同一工作空间内的不同任务转移它们。我们通过用可转移的原始词表示约束知识来解决此问题,并基于这些原始词使用贝叶斯优化(BO)来指导其他任务中的绑定搜索。通过语义和几何回溯,我们构建了约束原始图,以分别以可重复使用的形式编码几何约束。然后,我们设计了一种BO方法来有效利用累积约束来指导基于MCTS的绑定计划者的节点扩展。我们进一步构成了转移机制,以使tamp任务之间的自由知识流。结果表明,与基线无指导计划者相比,我们的方法将约束搜索搜索量的昂贵探索呼叫减少了43.60至71.69。

Searching for bindings of geometric parameters in task and motion planning (TAMP) is a finite-horizon stochastic planning problem with high-dimensional decision spaces. A robot manipulator can only move in a subspace of its whole range that is subjected to many geometric constraints. A TAMP solver usually takes many explorations before finding a feasible binding set for each task. It is favorable to learn those constraints once and then transfer them over different tasks within the same workspace. We address this problem by representing constraint knowledge with transferable primitives and using Bayesian optimization (BO) based on these primitives to guide binding search in further tasks. Via semantic and geometric backtracking in TAMP, we construct constraint primitives to encode the geometric constraints respectively in a reusable form. Then we devise a BO approach to efficiently utilize the accumulated constraints for guiding node expansion of an MCTS-based binding planner. We further compose a transfer mechanism to enable free knowledge flow between TAMP tasks. Results indicate that our approach reduces the expensive exploration calls in binding search by 43.60to 71.69 when compared to the baseline unguided planner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源